martes, 24 de junio de 2014

Fibra Optica

Lucas Zwezik, Augusto Tamayo, Juan Sebastian Rodriguez, William Ramirez
Fibra Optica

El uso de la luz para la codificación de señales no es nuevo. Los antiguos griegos usaban espejos para transmitir información, de modo rudimentario, usando luz solar.
La gran novedad aportada en nuestra época es la de haber conseguido “domar” la luz, de modo que sea posible que se propague dentro de un cable tendido por el hombre. 
Antes, en 1959, como derivación de los estudios en física enfocados a la óptica, se descubrió una nueva utilización de la luz, a la que se denominó rayo láser, que fue aplicado a las telecomunicaciones con el fin de que los mensajes se transmitieran a velocidades inusitadas y con amplia cobertura.
Sin embargo esta utilización del láser era muy limitada debido a que no existían los conductos y canales adecuados para hacer viajar las ondas electromagnéticas provocadas por la lluvia de fotones originados en la fuente denominada láser.
Fue entonces cuando los científicos y técnicos especializados en óptica dirigieron sus esfuerzos a la producción de un ducto o canal, conocido hoy como la fibra óptica. En 1966 surgió la propuesta de utilizar una guía óptica para la comunicación.
Esta forma de usar la luz como portadora de información se puede explicar de la siguiente manera: Se trata en realidad de una onda electromagnética de la misma naturaleza que las ondas de radio, con la única diferencia que la longitud de las ondas es del orden de micrómetros en lugar de metros o centímetros.
El concepto de las comunicaciones por ondas luminosas ha sido conocido por muchos años. Sin embargo, no fue hasta mediados de los años setenta que se publicaron los resultados del trabajo teórico. Estos indicaban que era posible confiar un haz luminoso en una fibra transparente flexible y proveer así un análogo óptico de la señalización por alambres electrónicamente.
El problema técnico que se había de resolver para el avance de la fibra óptica residía en las fibras mismas, que absorbían luz que dificultaba el proceso. Para la comunicación práctica, la fibra óptica debe transmitir señales luminosas detestables por muchos kilómetros. El vidrio ordinario tiene un haz luminoso de pocos metros. Se han desarrollado nuevos vidrios muy puros con transparencias mucho mayores que la del vidrio ordinario.  Estos vidrios empezaron a producirse a principios de los setenta. Este gran avance dio ímpetu a la industria de fibras ópticas. Se usaron láseres o diodos emisores de luz como fuente luminosa en los cables de fibras ópticas. Ambos han de ser miniaturizados para componentes de sistemas fibro-ópticos, lo que ha exigido considerable labor de investigación y desarrollo. Los láseres generan luz "coherente" intensa que permanece en un camino sumamente estrecho.  Los diodos emiten luz "incoherente" que ni es fuerte ni concentrada. Lo que se debe usar depende de los requisitos técnicos para diseñar el circuito de fibras ópticas dado.



Características
Coberturas más resistentes:
La cubierta especial es extruida a alta presión directamente sobre el mismo núcleo del cable, resultando en que la superficie interna de la cubierta del cable tenga arista helicoidales que se aseguran con los subcables.
La cubierta contiene 25% más material que las cubiertas convencionales.
Uso Dual (interior y exterior):
La resistencia al agua, hongos y emisiones ultra violeta; la cubierta resistente; buffer de 900 µm; fibras ópticas probadas bajo 100 kpsi; y funcionamiento ambiental extendida; contribuyen a una mayor confiabilidad durante el tiempo de vida.
Mayor protección en lugares húmedos:
En cables de tubo holgado rellenos de gel, el gel dentro de la cubierta se asienta dejando canales que permitan que el agua migre hacia los puntos de terminación. El agua puede acumularse en pequeñas piscinas en los vacíos, y cuando la delicada fibra óptica es expuesta, la vida útil es recortada por los efectos dañinos del agua en contacto. combaten la intrusión de humedad con múltiples capas de protección alrededor de la fibra óptica. El resultado es una mayor vida útil, mayor confiabilidad especialmente ambientes húmedos.
Protección Anti-inflamable:
Los nuevos avances en protección anti-inflamable hace que disminuya el riesgo que suponen las instalaciones antiguas de Fibra Óptica que contenían cubiertas de material inflamable y relleno de gel que también es inflamable.
Estos materiales no pueden cumplir con los requerimientos de las normas de instalación, presentan un riesgo adicional, y pueden además crear un reto costoso y difícil en la restauración después de un incendio. Con los nuevos avances en este campo y en el diseño de estos cables se eliminan estos riesgos y se cumple con las normas de instalación. 
Empaquetado de alta densidad:
Con el máximo número de fibras en el menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales.


VENTAJAS Y DESVENTAJAS DE LA FIBRA ÓPTICA
VENTAJAS
La fibra óptica hace posible navegar por Internet a una velocidad de dos millones de bps.
Acceso ilimitado y continuo las 24 horas del día, sin congestiones. 
Video y sonido en tiempo real.
Fácil de instalar.
Es inmune al ruido y las interferencias, como ocurre cuando un alambre telefónico pierde parte de su señal a otra.
Las fibras no pierden luz, por lo que la transmisión es también segura y no puede ser perturbada.
Carencia de señales eléctricas en la fibra, por lo que no pueden dar sacudidas ni otros peligros. Son convenientes para trabajar en ambientes explosivos.
Presenta dimensiones más reducidas que los medios preexistentes. 
El peso del cable de fibras ópticas es muy inferior al de los cables metálicos, capaz de llevar un gran número de señales.
La materia prima para fabricarla es abundante en la naturaleza.
Compatibilidad con la tecnología digital.
DESVENTAJAS
Sólo pueden suscribirse las personas que viven en las zonas de la ciudad por las cuales ya esté instalada la red de fibra óptica. 
El coste es alto en la conexión de fibra óptica, las empresas no  cobran por tiempo de utilización sino por cantidad de información transferida al computador, que se mide en megabytes. 
El coste de instalación es elevado.
Fragilidad de las fibras. 
Disponibilidad limitada de conectores.
Dificultad de reparar un cable de fibras roto

martes, 10 de junio de 2014

Backbone,Arpanet,NSFnet

Lucas Zwezik, Augusto Tamayo, Juan Sebastian Rodriguez, William Ramirez
Backbone
La palabra backbone se refiere a las principales conexiones troncales de Internet. Está compuesta de un gran número de routers comerciales, gubernamentales, universitarios y otros de gran capacidad interconectados que llevan los datos a través de países, continentes y océanos del mundo mediante cables de fibra óptica.
Las redes troncales son aquellas que unifican otras "redes" o más bien grupos

Historia
Bueno, tenemos que remontarnos a los años 60's, cuando en los E.U. se estaba buscando una forma de mantener las comunicaciones vitales del país en el posible caso de una Guerra Nuclear. Este hecho marcó profundamente su evolución, ya que aún ahora los rasgos fundamentales del proyecto se hallan presentes en lo que hoy conocemos como Internet.
En primer lugar, el proyecto contemplaba la eliminación de cualquier "autoridad central", ya que sería el primer blanco en caso de un ataque; en este sentido, se pensó en una red descentralizada y diseñada para operar en situaciones difíciles. Cada máquina conectada debería tener el mismo status y la misma capacidad para mandar y recibir información.
El envío de los datos debería descansar en un mecanismo que pudiera manejar la destrucción parcial de la Red. Se decidió entonces que los mensajes deberían de dividirse en pequeñas porciones de información o paquetes, los cuales contendrían la dirección de destino pero sin especificar una ruta específica para su arribo; por el contrario, cada paquete buscaría la manera de llegar al destinatario por las rutas disponibles y el destinatario reensamblaría los paquetes individuales para reconstruir el mensaje original. La ruta que siguieran los paquetes no era importante; lo importante era que llegaran a su destino.
Curiosamente fue en Inglaterra donde se experimentó primero con estos conceptos; y así en 1968, el Laboratorio Nacional de Física de la Gran Bretaña estableció la primera red experimental. Al año siguiente, el Pentágono de los E.U. decidió financiar su propio proyecto, y en 1969 se establece la primera red en la Universidad de California (UCLA) y poco después aparecen tres redes adicionales. Nacía así ARPANET (Advanced Research Projects Agency NETwork), antecedente de la actual Internet.
En 1989 se creó el backbone NSFNet. El ejército de los Estados Unidos de América se separó, creando la red MILNET, y ARPANET se cerró.
. Así, en 1989 la "columna vertebral de la red" ("Backbone"), era capaz de transmitir 1.5 millones de bits por segundo; para 1993, esta capacidad se había incrementado a 45 millones de bits por segundo.
Con el retiro del backbone de Internet de la NSFNet el 30 de abril de 1995, Internet a partir de ahora consiste enteramente de varios ISPs comerciales y redes privadas (así como redes entre universidades), conectadas a puntos de peering.
De esta manera, el papel de NSFNET como "columna vertebral" de Internet llegó a su fin. Actualmente hay "columnas vertebrales" en Canadá, Japón, Europa y se están desarrollando en América Latina y otros lugares
El término backbone de Internet suele referirse a los enlaces entre proveedores y puntos de peering. Sin embargo, con el uso universal del protocolo de encaminamiento BGP, Internet funciona sin ninguna red central.
Con la llegada de la burbuja de las punto com de 2002, un número grande de empresas de telecomunicaciones se vieron amenazadas por la bancarrota, y algunas quebraron completamente: por ejemplo, la red EBONE desapareció completamente. Ésta fue una prueba exitosa del nivel de tolerancia de errores y redundancia de Internet.

Tipos de backbone
Existen 2 tipos: cascada (cascadeado) y colapsado. En el primero, todos los puestos de trabajo (host, terminales) están conectados a un enlace troncal con el cuarto de equipos (ER); esta arquitectura es casi obsoleta y genera mucho tráfico innecesario en la red. En el colapsado existen varios tramos que salen del ER, permitiendo una mejor distribución de servicios, sin saturar ningún sector de la red y dando una mejor calidad de señal a los tramos lejos al ER.





Ruta del cable submarino SEA-ME-WE 4 (en rojo), el principal backbone entre el sureste asiático, el subcontinente indio, el medio oriente y Europa;el trozo en azul es terrestre.


Arpanet


Orígenes
Mientras todo esto ocurría, ARPA y Taylor seguían interesados en crear una red de ordenadores. Al final de 1967, Taylor contactó a Lawrence G. Roberts (del Laboratorio Lincoln, en el MIT) con el objeto de que liderase el proyecto de creación de la nueva red. Roberts ya conocía a Davies gracias a la mencionada conferencia sobre multiplexación en el tiempo.El concepto original de Roberts consistía en utilizar la técnica de multiplexación en el tiempo, uniendo máquinas directamente con cables telefónicos. En una de las primeras reuniones (de 1967), muchos participantes no estaban dispuestos a que sus computadoras tuvieran que gestionar líneas telefónicas. Uno de estos participantes, Wesley A. Clark, tuvo la idea de usar pequeños ordenadores separados sólo para gestionar los enlaces de comunicaciones. Esta idea permitió descargar de trabajo a las computadoras principales, además de aislar la red de la distinta naturaleza de cada computadora.Sobre esta base comenzó el diseño inicial de ARPANET. Roberts presentó su primer plan en un simposio de 1967. En este mismo evento se encontraba presente Roger Scantlebury, colaborador de Davies. Gracias a este encuentro discutieron la idea de la conmutación de paquetes, y permitió a Roberts conocer el trabajo de Baran.holllNacimiento de ARPANETEn el verano de 1968 ya existía un plan completo y aprobado por ARPA. De manera que se celebró un concurso con 140 potenciales proveedores. Sin embargo, solamente 12 de ellos presentaron propuestas. En 1969, el contrato se adjudicó a BBN (donde había trabajado Licklider, creador del concepto de Red Galáctica).El 29-10-1969 se transmite el primer mensaje a través de ARPANET y en menos de un mes (el 21-11-1969) se establece el primer enlace entre las universidades de Standford y la UCLA.La oferta de BBN seguía el plan de Roberts rápidamente. Los pequeños ordenadores se denominaron Procesadores de la interfaz de mensajes (IMPs). Éstos implementaban la técnica de almacenar y reenviar y utilizaban un módem telefónico para conectarse a otros equipos (a una velocidad de 50 kbits por segundo). Los ordenadores centrales se conectaban a los IMPs mediante interfaces serie a medida.Los IMP se implementaron inicialmente con ordenadores DDP-516 de Honeywell. Contaban con 24 kilobytes de memoria principal con capacidad para conectar un máximo de cuatro ordenadores centrales, y comunicarlos con otros seis IMP remotos. BBN tuvo disponible todo el hardware y el software necesario en tan sólo nueve meses.Primer despliegueLa ARPANET inicial consistía en cuatro IMPs instalados en:• UCLA, donde Kleinrock creó el Centro de medición de red. Un ordenador SDS Sigma 7 fue el primero en conectarse.• El Augmentation Research Center en el Instituto de investigación de Stanford, donde Doug Engelbart creó el novedoso sistema NLS, un incipiente sistema de hipertexto. Un ordenador SDS 940 fue el primero en conectarse.• La Universidad de California, con un IBM 360.• El Departamento Gráfico de la Universidad de Utah, donde Ivan Sutherland se trasladó. Con un PDP-10 inicialmente conectado.El primer enlace de ARPANET se estableció el 21 de noviembre de 1969 entre UCLA y Stanford. el 5 de diciembre del mismo año, toda la red inicial estaba lista.En marzo de 1970 ARPANET cruzó hasta la costa Este cuando la propia BBN se unió a la red. En 1971 ya existían 24 ordenadores conectados, pertenecientes a universidades y centros de investigación. Este número creció hasta 213 ordenadores en 1981 con una nueva incorporación cada 20 días en media y llegar a alcanzar los 500 ordenadores conectados en 1983.


NSFnet



A mitades de los 80 ARPAnet estaba alcanzando los límites de su capacidad (con unos 1000 sitios conectados). En 1985 la Fundación Nacional para la Ciencia (NSF) del Gobierno de los EEUU creó la NSFnet, una red de superordenadores de alta velocidad que actuaría como una "columna vertebral" a lo largo de todo el territiorio de los EEUU a la que tendrían libre acceso centros docentes e institutos de investigación. La NSFnet estaba basada en los protocolos de comunicación de la ARPAnet (TCP/IP, que deberían ser mejorados para permitir más ordenadores conectados) y sustituyó gradualmente a la misma. Al mismo tiempo se crearon redes regionales para soportar el tráfico desde las instituciones individuales a la NSFnet. La NSFnet creció rápidamente visto su gran potencial y debido en parte también al rápido desarrollo del software de comunicaciones que permitía un acceso más fácil. Al final de la década de los 80 se calcula que la NSFnet tenía unos 100.000 servidores.
En 1995 NSFNET es reemplazada por una nueva arquitectura de red (organización de la red), en donde eventualmente se perdería el papel central jugado hasta entonces por la NSF y el desarrollo de Internet descansaría en una estructura más descentralizada. De esta manera, el papel de NSFNET como "columna vertebral" de Internet llegó a su fin. Actualmente hay "columnas vertebrales" en Canadá, Japón, Europa y se están desarrollando en América Latina y otros lugares.